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Abstract. The effective equations of motion for a surface atom in an anharmonic surface potential have
been derived for dispersionless one-dimensional substrates. The system is equivalent to a non-linear damped
oscillator (Duffing oscillator) with the forcing term depending on the form of the incident wave. Efficiency
of harmonics generation, phonon reflection coefficients, effective local density of states, regions of chaotic
motion and windows of periodic motion have been comparatively evaluated for the system subject to
an oscillating external force and to the irradiation by a monochromatic phonon coming from the bulk.
Comparison of the resonant desorption of the surface atom within a given time interval has been made for
the same example of anharmonic surface potential in both types of perturbation.

PACS. 68.35.Ja Surface and interface dynamics and vibrations – 65.50.+m Thermodynamic properties
and entropy – 79.70.+q Field emission, ionization, evaporation, and desorption

1 Introduction

Anharmonicity is ubiquitous in the dynamics of the crys-
tal surfaces even though the atomic motions in the bulk
crystal might be satisfactorily described within harmonic
approximation. The reasons for that lie in a lower coor-
dination of the surface atoms and in their exposition to
external influences [1]. Both of these factors contribute to
the enhancement of the vibrational amplitudes of the sur-
face atoms and may result in such strongly anharmonic
effects as structural instabilities, e.g. surface reconstruc-
tion phase transitions [2], or the complete desorption of
the atoms from the surface [3].

It is, therefore, plausible to assume, at least in a first
approximation, that the anharmonicity is concentrated
close to the surface only, whereas the bulk crystal remains
perfectly harmonic. This approach allows one to reduce
the number of the degrees of freedom involved in the cor-
responding effective equations of motion to those that ex-
plicitly participate in the anharmonic interactions [4]. The
effective equations of motion then are generally Volterra
Integro-Differential Equations (VIDE) [1,4]. The remain-
ing or “harmonic” degrees of freedom contribute to the
corresponding memory kernels. In the particular case of
dispersionless bulk crystals the memory kernels take on a
delta-like form so that the corresponding effective equa-
tions of motion reduce to just differential equations.

In the present paper we consider the dynamics of an
anharmonic surface in a one-dimensional dispersionless
harmonic crystal. We show that when such a system is
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subject to an external force applied to the surface atom,
its effective equation of motion is equivalent to that of an
anharmonic damped oscillator or, in the special case of
the surface potential given by a polynomial, to the Duff-
ing oscillator [5]. The equation of motion for the same
system irradiated by a phonon coming from the bulk can
be also expressed in this form with, however, the forcing
term dependent on the incident wave.

Section 2 contains a simple derivation of the above ef-
fective equations of motion and gives their explicit form
for monochromatic incident phonons. Conditions for ho-
moclinic instability in the specific limit of a very light or
very stiff substrate are also given in Section 2. Examples
of numerical results for an analogue of the local density
of states, here called energy loss coefficient, for efficien-
cies of harmonics and subharmonics generation and for
phonon reflection coefficients in the ranges of regular and
chaotic solutions are presented in Section 3. The numeri-
cal analyses do not require any restrictions on the model
parameters. The parameters used in Section 3 are chosen
so as to enable a direct comparison of the solution of the
new differential equation for the phonon scattering with
the known behaviour of the Duffing oscillator. In Section 4
the problem of escape of the surface atom from its initial
equilibrium position, relevant in the study of desorption,
is numerically solved for both types of equations.

2 Equation of motion for a surface atom
on a dispersionless substrate

To model the surface anharmonicity we assume that the
surface atom of mass M , while interacting with the bulk
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in a harmonic way, is additionally placed in a local anhar-
monic potential V (u(t)), where u(t) stands for the time-
dependent one-dimensional displacement of the surface
atom from its initial position. The local potential breaks
the translational invariance of the system and has a phys-
ical meaning of a heavy motionless anvil or support the
surface is attached to.

In the long wavelength limit the bulk crystal is ap-
proximated by a continuous medium. In the simplest one-
dimensional case the medium reduces to a semi-infinite
elastic string extended in the range x = 0 . . .∞. The ini-
tial position of the surface atom corresponds to x = 0.
Denoting by u(x, t) the displacement of the element of
the string at the point x as a function of time t one gets
the following equations of motion for the described system
under an external force f0(t) applied to the surface atom:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
, for x > 0, (1a)
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+ f0(t)

)
,

for x = 0. (1b)

Here c =
√
T/ρ is the sound velocity in the string, T is

the stiffness coefficient and ρ is the linear density of the
string.

Since the string is dispersionless, every wave of what-
ever form propagates in it without changing its form,
so that every solution of the equation (1a) can be writ-
ten as a sum of two waves: one travelling to the right
u(t, x) = u(ζ−) with ζ− = ct − x and the other trav-
elling to the left u(t, x) = u(ζ+) with ζ+ = ct + x [6].
Because our string is semi-infinite and the force f0(t) is
applied to its left end, the only existing solution is an out-
going wave u(t, x) = u(ζ−). Equation (1a) then is satis-
fied everywhere, whereas the limit condition (Eq. (1b)) for
x = 0 transforms into the following ordinary differential
equation:

M
∂2u(t)
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+
T

c

∂u(t)

∂t
+
∂V (u)

∂u
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u=u(t)

= f0(t). (2)

The latter equation describes a damped forced anhar-
monic oscillator or, in the case of the potential V (u) given
by a polynomial, Duffing’s oscillator [5] with the damping
constant Γ = T/c. The role of the harmonic degrees of
freedom is now reduced to an effective damping.

The same reasoning can be adopted to derive the equa-
tion of motion for the surface atom under an incident wave
coming from the bulk. Then the solution will be the sum
of the incident wave ui(x, t) = ui(ζ+) = ui(ct + x) and
of an outgoing or reflected wave ur(t, x) = ur(ζ−). As
before equation (1a) is satisfied for both waves, whereas

equation (1b) takes on the following form:

M
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c
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(3a)

or with the substitution ui(0, t) + ur(0, t) = u(t)

M
∂2u(t)

∂t2
+
T

c

∂u(t)

∂t
+
∂V (u)

∂u

∣∣∣∣
u=u(t)

=
2T

c

∂ui(t)

∂t
·

(3b)

Here again one ends up with an ordinary differential equa-
tion with either the unknown function ur(0, t), describing
the reflected wave or, equivalently with the unknown func-
tion u(t) corresponding to the total effective displacement
of the surface atom. The most common form of the inci-
dent wave is a monochromatic phonon

ui(ct+ x) = a sin
[ω
c

(ct+ x) + ϕ
]
, ct+ x ≥ 0;

ui(ct+ x) = 0, ct+ x < 0. (4)

The solution of the analogous problem with a harmonic
potential can be easily found with the use of the Fourier
transform for each frequency ω separately [7]. The present
nonlinear equation must, however, be solved numerically
unless restrictive approximations are made. Linearisation
or limitation to a few harmonics [8] preclude e.g. any in-
stance of chaos, which is a priori to be expected for certain
ranges of the model parameters. To enable any numerical
treatment, the actual form of the wave front should be de-
fined. The condition of the wave vanishing for ct+ x < 0
in equation (4) is the simplest choice implying an abrupt
switching on of the perturbation.

To make the comparison of the equations (3a) and (3b)
with the well known Duffing oscillator [5,9] easier we shall
consider here a polynomial form of the local potential

V (u) =
1

2
Au2 +

1

3
Cu3 +

1

4
Bu4. (5)

The proper choice of the coefficients A, C andB allows one
to model a double-well potential corresponding to the sur-
face atom participating in a surface reconstruction phase
transition [2] as well as some approximate potentials use-
ful in the discussion of the desorption [1,3].

With the incident wave of equation (4) and with the lo-
cal potential of equation (5) the explicit differential equa-
tion for the unknown co-ordinate u(t) of the surface atom
and, at the same time, for the reflected wave ur(ζ), reads

M
∂2u

∂t2
+
T

c

∂u

∂t
+Au+ Cu2 +Bu3 = 2ω

T

c
a cos(ωt+ ϕ).

(6)

Solutions of the equations (2) and (3) provide the time-
dependent response of the surface atom subject to an ex-
ternal force and to the irradiation by a phonon coming
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from the bulk respectively. Once the corresponding solu-
tions are known the quantitative estimates of experimental
observables can be computed.

The systems described by equations (2) and (3) are
non integrable and show irregular or chaotic behaviour at
least in certain ranges of their parameters. As a signa-
ture of the fully developed chaos we use, throughout this
paper, the positive value of the Lyapunov exponent. Be-
fore showing such results for arbitrary values of the model
parameters we present here estimates for so called homo-
clinic instabilities [10] in the specific limit of a weak f0,
(or a) and Γ = T/c which quantities are treated as small
in the first order perturbation theory. To reveal the dif-
ference between equation (2) for an external force and
equations (3) for the phonon scattering in this limit we
put the same values A = −1, B = 1, C = 0, M = 1 in
both cases and study the forcing terms f0(t) = f0 cos(ωt)
and ui(x, t) = a sin(ωt+ xω/c) respectively. The applica-
tion of the Melnikov method [11] provides the following
threshold condition for the onset of the homoclinic insta-
bility in equation (2)

Γ <
(

3
√

2/4
)
f0πω sech (πω/2). (7)

Accordingly, the homoclinic instability occurs in the re-
gion of frequency ω in which the function ω sech(πω/2)
is big enough. The region is the larger the stronger is the
amplitude of the applied force f0 with respect to the ef-
fective damping constant Γ . The condition for the homo-
clinic instability in the case of phonon scattering (Eq. (6))
obtained in the same way is

1 <
(

3
√

2/4
)
aω2 sech (πω/2). (8)

Now the region of instability is shifted towards higher fre-
quencies due to the factor ω2. The most important differ-
ence, compared with the ordinary Duffing oscillator, is the
independence of the condition (8) of the damping constant
Γ . Both above conditions are necessary, but not sufficient,
for the full chaos to occur. The threshold of the positive
Lyapunov exponent lies at the forcing parameters f0 and
a somewhat greater [10,11] than those implied by the con-
ditions (7) and (8).

When the assumption of a weak effective damping
Γ = T/c (very light or very stiff substrate) underlying the
conditions (7) and (8) is not fulfilled, we use numerically
obtained time series to determine the regions of chaos. In
the next section we also show examples of harmonics and
subharmonics generation efficiencies, of reflection coeffi-
cients, and of an analogue of the local density of states
in a large range of the model parameters so as to com-
pare the behaviour of the system in the regular and in the
chaotic regimes.

3 Physical characteristics of the nonlinear
surface response

To get the time-series needed to characterise the response
of the surface atom for arbitrary values of the model pa-
rameters we solved equations (2) and (6) with the use of a

simplectic integrator based on the Verlet algorithm and on
a step adaptive Runge- Kutta-Fehlberg method [12]. This
method allowed us to obtain stable solutions of sufficient
lengths so as to obtain reliable frequency spectra of the
corresponding time series as well as satisfactory estimates
for the Lyapunov exponent.

In the case of the system with the external applied
force f0(t) = f0(ω) cos(ωt) (Eq. (2)) the quantity of in-
terest is the efficiency of generation of harmonics and
subharmonics. The efficiency En is defined as the ratio
En = u(nω)/f0(ω), where u(nω) is the nth Fourier com-
ponent of the displacement u(t) satisfying equation (2).
Integer values of index n correspond to harmonics and
fractional values to subharmonics. Analogous quantities
relevant in the phonon scattering experiment are reflec-
tion coefficients for particular harmonics Rn = ur(nω)/a
defined as the ratio of the nth Fourier component of
the reflected wave to the incident amplitude a. In the
present model the reflected wave ur(t) is deduced from
equation (6). The quantity R1 is the ordinary reflection
coefficient considered in models of harmonic surfaces [7].

For comparison with the detailed analysis existing for
the Duffing oscillator we chose the coefficients of the lo-
cal anharmonic potential after reference [13]: M = 1,
A = −10,B = 100, C = 0, T/c = 1 and the frequency ω of
the applied force f0(t) = f0(ω) cos(ωt) equal to ω = 3.5.
Figure 1 shows the efficiencies of generation of the low-
est harmonics and subharmonics as well as the lowest
reflection coefficients. In the upper part of Figure 1 the
Lyapunov exponent is represented to indicate the regions
of chaos which correspond to λ > 0 [14]. The present
values for the Lyapunov exponent are consistent with
the results of reference [13]. The comparison of r.h.s. of
equations (2) and (6) makes clear that En = Rn × c/2Tω
for n 6= 1. The higher harmonics and subharmonics, ex-
cept for n = 1, vanish in the limit a → 0 and f0 → 0
in which case the harmonic approximation is valid. With
increasing the applied force f0 and the incident amplitude
a the second harmonic n = 2 shows up progressively. A
significant third harmonic n = 3 appears in the region of a
fast rise of the fundamental efficiency E1. A visible point
of recession in the fundamental efficiency and of a step-
like decrease in the reflection coefficient R1 for f0 ≈ 0.6 is
related with generation of harmonics n > 3 not shown in
Figure 1.

The onset of chaos at a = 0.1184 . . . or f0 = 0.8288 . . .
is preceded by the appearance of the second subharmonic
n = 1/2 which is equivalent to the doubling of the period
of the solution of equations (2) and (6) with respect to the
period of the perturbation 2π/ω. The detailed behaviour
of the subharmonics in this region is shown in Figure 2.
One can see a consecutive appearance of subharmonics
1/2 and 1/4 which is characteristic for the Feigenbaum
scenario of the chaos onset. It is interesting that the sub-
harmonic 1/8 is rather weak. The multiplication of the
period by 8 is, nevertheless, clear and is realised by si-
multaneous appearance of subharmonics 3/8 and 5/8. A
part of the sequence of period doublings is presented in
Figure 3 by the corresponding phase portraits. The values
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Fig. 1. Generation efficiencies En of the lowest harmonics
and subharmonics by the external oscillatory force f(t) =
f0(ω) cos(ωt) applied to the surface atom in the potential
V0(u) = −5u2 + 25u4 and the reflection coefficients Rn, for the
incident wave u(ct + x) = a sin(ωt+ xω/c); ω = 3.5, T/c = 1.
The upper part shows the corresponding Lyapunov exponent.

of the incident amplitudes corresponding to the first three
period doublings are: a1 = 0.110, a2 = 0.1167, a3 =
0.1181, which give two estimates for the constant δ in
the Feigenbaum formula ach − am ∝ δ−m: δ = 4.941 and
δ = 5.667. The latter values are close to the universal
value δ = 4.6692... [14].

The region of chaos, corresponding to the positive
Lyapunov exponent λ > 0, interrupted by windows of pe-
riodic motion (λ = 0) extends from a = 0.1184 . . . (f0 =
0.8288 . . . ) to a = 0.2863 . . . (f0 = 2.0041 . . . ). The re-
flected wave differs markedly in cases of periodic and of
chaotic motion of the surface. The periodic motion shows
a discrete frequency spectrum consisting of odd harmonics
of a certain subharmonic of the incident frequency ω [9].
The spectra in the chaotic regions are irregular and con-
tinuous with narrower or broader maxima corresponding
to the frequencies present in the neighbouring periodic
windows. A comparison of spectra in a window of period-
icity equal to 7 × 2π/ω (a = 0.137) and in the adjacent
region of chaos (a = 0.141) is exhibited in Figure 4. A
closer insight into the power spectra of the chaotic solu-

Fig. 2. The lowest harmonics and the Lyapunov exponent near
the onset of chaos in the system from Figure 1.

tions shows that they tend to constant non-zero values for
ω → 0 which behaviour witnesses to a lack of long-time
correlations [15].

The largest window of periodicity close to a =
0.200 (f0 = 1.4) is associated with a strong third subhar-
monic, see Figure 1. Figure 5 shows the corresponding fre-
quency spectrum. The consecutive odd harmonics are very
well fitted by an exponential function. Figures 6a and 6b
exhibit a comparison of the phase portraits in the regular
window a = 0.200 and in the neighbouring region of chaos
a = 0.225, which allows one to appreciate the character
of the chaotic motion. The basic shape corresponding to
the period triplication is repeated with some unexpected
distortions of a dephasing character. This is the cause that
traces of the broadened subharmonic 1/3 and its odd har-
monics are present in the chaotic spectrum in analogy to
the subharmonic 1/7 in Figure 4. Generally, this behaviour
is characteristic of unstable periodic orbits [9]. Beyond the
upper limit of chaos a = 0.288 . . . (f0 = 2.016 . . . ) the mo-
tion becomes periodic with the periodicity corresponding
to the incident frequency and with only odd harmonics.
The latter property results from a particular choice of a
symetric surface potential.

To delimit the region of chaos for different values of
the frequency of the incident wave Figure 7 shows the
Lyapunov exponent as a function of ω for some selected
incident amplitudes.

Anharmonicity modifies the shape of the surface
resonance. To visualise this we define the energy loss
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Fig. 3. Phase portraits of the motion of the surface atom under
the incident wave near the onset of chaos in the system of
Figure 1. Visible is doubled, quadrupled and octupled period.

coefficient as the power transmitted to the system per
square of the amplitude of the applied force. The energy
loss coefficient then describes the relative decrease in the
intensity of the initial radiation beam due to the inelastic
scattering. In the limit of weak amplitudes this quantity
is equivalent to the local density of states LDOS. Fig-
ure 8 shows the evolution of the energy loss coefficient
with increasing amplitude f0(ω). One can see an initial
Lorenzian shape, its broadening, its shift towards lower
frequencies and its final break down associated with the
onset of chaos. A behaviour of the kind shown in Figure 8
is expected in experiments with inelastic scattering of a
radiation sent from outside of the crystal from the anhar-
monic surface [16].

4 Resonant desorption of the surface atom

When the amplitude of the applied external force or
of the incident wave is weak enough the motion of

Fig. 4. Fourier transforms ur(ω) in a window of periodic mo-
tion (amplitude of the incident wave a = 0.137) and in the
neighbouring chaotic region (a = 0.141). Visible is the subhar-
monic 1/7 with its odd harmonics.

Fig. 5. Fourier transform ur(ω) in the largest periodic win-
dow corresponding to the period triplication. The intensities
of the consecutive odd harmonics are well approximated by an
exponential function.

the surface atom rests confined in the neighbourhood
of one of the two minima of the potential given by
equation (5). With increasing amplitude of the pertur-
bation the motion becomes strongly anharmonic and
often chaotic. For still slightly greater amplitude the
atom eventually starts to visit the second minimum. It
should be stressed that the chaos usually occurs ear-
lier than the transition to the second minimum. This
transition is a model of desorption. For realistic cases
different values of the coefficients A, B and C of
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(a)

(b)

Fig. 6. Comparison of the phase portraits in (a) the window
of periodic motion (amplitude of the incident wave a = 0.20),
and (b) the neighbouring region of chaotic motion (a = 0.225).

equation (5) should be studied as well as different forms
of the potential so as to correctly model the interaction of
the atom with the surface at long distances [3,17].

Here we have studied the phenomenon for the same
values A = −10, B = 100, C = 0 as used in previous sec-
tion in order to give a complete set of data for this case.
Figure 9 shows the minimal external force f0(ω) capable
of driving the surface atom out the initial minimum within
the time t = 4×102 in the units of the model. The desorp-
tion is particularly enhanced for a frequency slightly lower
than the resonance frequency of the harmonic part of the
potential ωr =

√
2A/M . Side minima in the curve occur

close to the harmonics and subharmonics of the resonance
frequency especially for low values of the effective damp-
ing T/c. This effect can be called resonant desorption. The
present numerical results are in qualitative agreement with
approximate calculations done for similar system by Re-
ichl and Zheng [18] in the frequency range ωr < ω < 2.0ωr.

Fig. 7. Lyapunov exponent as a function of the frequency and
amplitude of the incident wave in the scattering of phonon
from the surface of Figure 1.

Fig. 8. Energy Loss Coefficient, i.e. the power transmitted to
the system per squared amplitude of the applied force (equiva-
lent to LDOS for weak amplitudes) as a function of frequency
in the region of a surface resonance for various values of the
applied amplitude. The model parameters same as in Figure 1.

An analogous set of curves for the desorption induced
by a wave coming from the bulk is shown in Figure 10.
Generally, the enhancement of the desorption at the reso-
nant frequency as well as at its subharmonics and harmon-
ics is very similar. The main difference in the behaviour
concerns the limits ω → 0 and ω →∞. The minimal am-
plitude capable of driving the atom out of its initial min-
imum tends to infinity for small frequencies and shows a
behaviour a ∼ f0 min/ω for large frequencies.

The described features are particularly pronounced for
small effective damping T/c =

√
ρ/T which means that

the resonant character of the desorption should be ex-
pected in relatively light and stiff substrates.



P. Zieliński et al.: Harmonics and chaos in anharmonic surfaces 531

Fig. 9. Minimal external force f0 capable of driving the surface
atom from the initial potential minimum within time 4 × 102

for three different substrates.

Fig. 10. Minimal amplitude a of the incident wave capable of
driving the surface atom from the initial potential minimum
within time 4× 102. All parameters same as in Figure 9.

5 Discussion

The comparative study of the dynamics of the surface
atom on a dispersionless substrate, subject to two kinds
of perturbations: i) an oscillatory external force and ii)
a monochromatic incident phonon coming from the bulk,
reveals some analogies but also some differences. From the
mathematical point of view the case i) is equivalent to the
well known Duffing oscillator (Eq. (2)) whereas the case
ii) involves a differential equation whose source term is
a function of the incident wave (Eq. (6)). In both cases
an increase in the amplitude of the perturbation engen-
ders the second and, further, higher harmonics. Still larger
amplitudes result in a sequence of period doublings, which
eventually ends up with the onset of chaos according to the
Feigenbaum scheme. In turn, an interval of amplitudes ap-
pears, which is marked by a chaotic response interrupted
by windows of periodic motion. Above a certain value of
the amplitude the chaos gives way to a periodic motion
with the period equal to the period of the perturbation

and with only odd harmonics. The latter property results
from the specific choice of the symmetric surface potential.
Generally, the scheme of appearance and destabilisation of
periodic orbits is fulfilled [9].

The escape of the surface atom out of its initial equilib-
rium location is a simple model of desorption in the given
surface potential. Physisorbed neutral atoms are expected
to better obey the present model because chemisorption
and ionisation involve electronic degrees of freedom, here
only accounted for through phenomenological coefficients
of the surface potential. The energetic barriers related to
chemisorption are usually much higher than the range of
phonon energies [17,19]. Resting within the present model
one can notice an enhancement of the desorption for a
resonance frequency and, to a smaller extent, for its har-
monics and subharmonics. The frequency of the resonant
desorption is slightly lower than the frequency of the
surface resonance in the harmonic approximation. The
present resonant desorption is a classical analogue of
the quantum evaporation [20]. Whereas the quan-
tum desorption requires the frequency of the pertur-
bation corresponding to the quantum level with re-
spect to the desorbed state, the present enhanced
desorption is related to the classical resonance frequency.

The calculations shown in Sections 3 and 4 do not
involve quantum effects so that they are expected to de-
scribe atoms which are heavy enough and at sufficiently
high temperatures. The study of effects of thermal fluc-
tuations and of finite coherence lengths of the perturba-
tions concomitant in such circumstances, are now under
progress and will be presented in future.
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